Lattice points close to families of surfaces, nonisotropic dilations and regularity of generalized Radon transforms

نویسندگان

  • Alex Iosevich
  • Krystal Taylor
  • ALEX IOSEVICH
  • KRYSTAL TAYLOR
چکیده

We prove that if φ : R × R → R, d ≥ 2, is a homogeneous function, smooth away from the origin and having nonzero Monge–Ampere determinant away from the origin, then R#{(n,m) ∈ Z × Z : |n|, |m| ≤ CR;R ≤ φ(n,m) ≤ R+ δ} . max{R 2 d+1 , Rδ}. This is a variable coefficient version of a result proved by Lettington, 2010, extending a previous result by Andrews, 1963, showing that if B ⊂ R, d ≥ 2, is a symmetric convex body with a sufficiently smooth boundary and nonvanishing Gaussian curvature, then (∗) #{k ∈ Z : dist(k,R∂B) ≤ δ} . max{R 2 d+1 , Rδ}. Furthermore, we shall see that the same argument yields a nonisotropic analog of (∗), one for which the exponent on the right hand side is, in general, sharp, even in the infinitely smooth case. This sheds some light on the nature of the exponents and their connection with the conjecture due to Wolfgang Schmidt on the distribution of lattice points on dilates of smooth convex surfaces in R.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric incidence theorems via Fourier analysis

We show that every non-trivial Sobolev bound for generalized Radon transforms which average functions over families of curves and surfaces yields an incidence theorem for suitably regular discrete sets of points and curves or surfaces in Euclidean space. This mechanism allows us to deduce geometric results not readily accessible by combinatorial methods.

متن کامل

A Calderón-zygmund Estimate with Applications to Generalized Radon Transforms

We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators and generalized Radon transforms.

متن کامل

Sharp Rate of Average Decay of the Fourier Transform of a Bounded Set

Estimates for the decay of Fourier transforms of measures have extensive applications in numerous problems in harmonic analysis and convexity including the distribution of lattice points in convex domains, irregularities of distribution, generalized Radon transforms and others. Here we prove that the spherical L-average decay rate of the Fourier transform of the Lebesgue measure on an arbitrary...

متن کامل

Singular integral characterization of nonisotropic generalized BMO spaces

We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic H spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of H spaces by singular integrals of R with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. Mo...

متن کامل

Generalized Transforms of Radon Type and Their Applications

These notes represent an extended version of the contents of the third lecture delivered at the AMS Short Course “Radon Transform and Applications to Inverse Problems” in Atlanta in January 2005. They contain a brief description of properties of some generalized Radon transforms arising in inverse problems. Here by generalized Radon transforms we mean transforms that involve integrations over c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011